Package: predtoolsTS 1.0.0

predtoolsTS: Time Series Prediction Tools

Makes the time series prediction easier by automatizing this process using four main functions: prep(), modl(), pred() and postp(). Features different preprocessing methods to homogenize variance and to remove trend and seasonality. Also has the potential to bring together different predictive models to make comparatives. Features ARIMA and Data Mining Regression models (using caret).

Authors:Alberto Vico Moreno [aut, cre], Antonio Jesus Rivera Rivas [aut, ths], Maria Dolores Perez Godoy [aut, ths]

predtoolsTS_1.0.0.tar.gz
predtoolsTS_1.0.0.zip(r-4.5)predtoolsTS_1.0.0.zip(r-4.4)predtoolsTS_1.0.0.zip(r-4.3)
predtoolsTS_1.0.0.tgz(r-4.5-any)predtoolsTS_1.0.0.tgz(r-4.4-any)predtoolsTS_1.0.0.tgz(r-4.3-any)
predtoolsTS_1.0.0.tar.gz(r-4.5-noble)predtoolsTS_1.0.0.tar.gz(r-4.4-noble)
predtoolsTS_1.0.0.tgz(r-4.4-emscripten)predtoolsTS_1.0.0.tgz(r-4.3-emscripten)
predtoolsTS.pdf |predtoolsTS.html
predtoolsTS/json (API)

# Install 'predtoolsTS' in R:
install.packages('predtoolsTS', repos = c('https://avm00016.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/avm00016/predtoolsts/issues

On CRAN:

Conda:

3.20 score 1 stars 32 scripts 136 downloads 23 exports 129 dependencies

Last updated 7 years agofrom:11384b2630. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 17 2025
R-4.5-winOKMar 17 2025
R-4.5-macOKMar 17 2025
R-4.5-linuxOKMar 17 2025
R-4.4-winOKMar 17 2025
R-4.4-macOKMar 17 2025
R-4.4-linuxOKMar 17 2025
R-4.3-winOKMar 17 2025
R-4.3-macOKMar 17 2025

Exports:modlmodl.arimamodl.dataMiningmodl.trControlmodl.tsToDataFramepostppostp.deseason.differencingpostp.detrend.differencingpostp.detrend.sfsmpostp.homogenize.boxcoxpostp.homogenize.logpredpred.arimapred.compareModelspred.dataMiningprepprep.check.acfprep.check.adfprep.deseason.differencingprep.detrend.differencingprep.detrend.sfsmprep.homogenize.boxcoxprep.homogenize.log

Dependencies:backportsbase64enccaretclasscliclockcodetoolscolorspaceconfigcpp11curldata.tablediagramdigestdotCall64dplyre1071elmNNRcppEMDfansifarverfieldsforeachforecastfracdifffuturefuture.applygenericsggplot2globalsgluegowergtablehardhathereinsightipredisobanditeratorsjsonlitekerasKernelKnnKernSmoothKFASlabelinglatticelavalifecyclelistenvlmtestlocfitlubridatemagrittrmapsMASSMatrixMetricsmgcvModelMetricsMuMInmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpngpROCprocessxprodlimprogressrproxypspurrrquadprogquantmodR6randomForestrappdirsRColorBrewerRcppRcppArmadilloRcppTOMLrecipesreshape2reticulaterlangRlibeemdrpartrprojrootRSNNSrstudioapisandwichscalesshapespamsparsevctrsSQUAREMstringistringrstrucchangesurvivaltensorflowtfautographtfdatasetstfrunstibbletidyrtidyselecttimechangetimeDatetseriesTSPredTTRtzdburcautf8varsvctrsviridisLitewaveletswhiskerwithrxtsyamlzeallotzoo